Abstract

Ovarian cancer is a highly lethal gynecological disease. Accurate and automated segmentation of ovarian tumors in contrast-enhanced computed tomography (CECT) images is crucial in the radiotherapy treatment of ovarian cancer, enabling radiologists to evaluate cancer progression and develop timely therapeutic plans. However, automatic ovarian tumor segmentation is challenging due to factors such as inhomogeneous background, ambiguous tumor boundaries, and imbalanced foreground-background, all of which contribute to high predictive uncertainty for a segmentationmodel. To tackle these challenges, we propose an uncertainty-aware refinement framework that aims to estimate and refine regions with high predictive uncertainty for accurate ovarian tumor segmentation in CECTimages. To this end, we first employ an approximate Bayesian network to detect coarse regions of interest (ROIs) of both ovarian tumors and uncertain regions. These ROIs allow a subsequent segmentation network to narrow down the search area for tumors and prioritize uncertain regions, resulting in precise segmentation of ovarian tumors. Meanwhile, the framework integrates two guidance modules that learn two implicit functions capable of mapping query features sampled according to their uncertainty to organ or boundary manifolds, guiding the segmentation network to facilitate information encoding of uncertainregions. Firstly, 367 CECT images are collected from the same hospital for experiments. Dice score, Jaccard, Recall, Positive predictive value (PPV), 95% Hausdorff distance (HD95) and Average symmetric surface distance (ASSD) for the testing group of 77 cases are 86.31%, 73.93%, 83.95%, 86.03%, 15.17 mm and 2.57 mm, all of which are significantly better than that of the other state-of-the-art models. And results of visual comparison shows that the compared methods have more mis-segmentation than our method. Furthermore, our method achieves a Dice score that is at least 20% higher than the Dice scores of other compared methods when tumor volumes are less than 20 cm , indicating better recognition ability to small regions by our method. And then, 38 CECT images are collected from another hospital to form an external testing group. Our approach consistently outperform the compared methods significantly, with the external testing group exhibiting substantial improvements across key evaluation metrics: Dice score (83.74%), Jaccard (69.55%), Recall (82.12%), PPV (81.61%), HD95 (12.31mm), and ASSD (2.32mm), robustly establishing its superiorperformance. Experimental results demonstrate that the framework significantly outperforms the compared state-of-the-art methods, with decreased under- or over-segmentation and better small tumor identification. It has the potential for clinicalapplication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.