Abstract

Anomalous object detection (AOD) in medical images aims to recognize the anomalous lesions, and is crucial for early clinical diagnosis of various cancers. However, it is a difficult task because of two reasons: (1) the diversity of the anomalous lesions and (2) the ambiguity of the boundary between anomalous lesions and their normal surroundings. Unlike existing single-modality AOD models based on deterministic mapping, we constructed a probabilistic and deterministic AOD model. Specifically, we designed an uncertainty-aware prototype learning framework, which considers the diversity and ambiguity of anomalous lesions. A prototypical learning transformer (Pformer) is established to extract and store the prototype features of different anomalous lesions. Moreover, Bayesian neural uncertainty quantizer, a probabilistic model, is designed to model the distributions over the outputs of the model to measure the uncertainty of the model’s detection results for each pixel. Essentially, the uncertainty of the model’s anomaly detection result for a pixel can reflect the anomalous ambiguity of this pixel. Furthermore, an uncertainty-guided reasoning transformer (Uformer) is devised to employ the anomalous ambiguity, encouraging the proposed model to focus on pixels with high uncertainty. Notably, prototypical representations stored in Pformer are also utilized in anomaly reasoning that enables the model to perceive diversities of the anomalous objects. Extensive experiments on five benchmark datasets demonstrate the superiority of our proposed method. The source code will be available in github.com/umchaohuang/UPformer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.