Abstract

Acute ischemic stroke (AIS) is a leading global cause of mortality and morbidity. Improving long-term outcome predictions after thrombectomy can enhance treatment quality by supporting clinical decision-making. With the advent of interpretable deep learning methods in recent years, it is now possible to develop trustworthy, high-performing prediction models. This study introduces an uncertainty-aware, graph deep learning model that predicts endovascular thrombectomy outcomes using clinical features and imaging biomarkers. The model targets long-term functional outcomes, defined by the three-month modified Rankin Score (mRS), and mortality rates. A sample of 220 AIS patients in the anterior circulation who underwent endovascular thrombectomy (EVT) was included, with 81 (37%) demonstrating good outcomes (mRS≤\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\le$$\\end{document}2). The performance of the different algorithms evaluated was comparable, with the maximum validation under the curve (AUC) reaching 0.87 using graph convolutional networks (GCN) for mRS prediction and 0.86 using fully connected networks (FCN) for mortality prediction. Moderate performance was obtained at admission (AUC of 0.76 using GCN), which improved to 0.84 post-thrombectomy and to 0.89 a day after stroke. Reliable uncertainty prediction of the model could be demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.