Abstract
In decision modeling for health economic evaluation, bootstrapping and the Cholesky decomposition method are frequently used to assess parameter uncertainty and to support probabilistic sensitivity analysis. An alternative, Gauss's error propagation law, is rarely known but may be useful in some settings. Bootstrapping, the Cholesky decomposition method, and the error propagation law were compared regarding standard deviation estimates of a hypothetic parameter, which was derived from a regression model fitted to simulated data. Furthermore, to demonstrate its value, the error propagation law was applied to German administrative claims data. All 3 methods yielded almost identical estimates of the standard deviation of the target parameter. The error propagation law was much faster than the other 2 alternatives. Furthermore, it succeeded the claims data example, a case in which the established methods failed. In conclusion, the error propagation law is a useful extension of parameter uncertainty assessment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.