Abstract

Uncertainty associated with multiple sources of error exists in biomass estimation over large areas. This uncertainty affects the accuracy of the resultant biomass estimates. A new method that introduces Taylor series principles into a Monte Carlo simulation procedure was proposed and developed for estimating regional-scale aboveground biomass, along with quantifying the corresponding uncertainty arising from both sampling and model predictions. Additionally, the effect of sample size on estimates during model fitting was studied based on the new method to determine whether the effect of the size of the calibration data set can be neglected when the number of simulations is sufficiently large. The results revealed that the proposed method not only produces more reliable estimates of both biomass and uncertainty but also effectively and separately quantifies the uncertainties associated with different sources of error. The new method also reduced the effect of model uncertainty on final estimates. The uncertainty that was associated with model error increased significantly with decreasing sample sizes during model fitting, and the error was not reduced by increasing the number of Monte Carlo simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.