Abstract

The present studies focus on the quantification of uncertainty during the main steam line break accident scenario (MSLB) in PWR, assuming that there is a failure on the feed-water regulating valve of the broken steam generator. The scenario is characterized by the associated positive Doppler and coolant density reactivities which bring the core back to critical (return-to-power). Accordingly, the input uncertainty parameters are the Doppler and coolant density reactivities taking into account the correlation matrix among the input parameters, which is calculated by SCALE 6.2 code. The main safety parameters are the maximum cladding surface temperatures and average core power during the accident which are computed by ATHLET thermal-hydraulic code. The sampling-based uncertainty technique is considered to be the most dependable technique which can be applicable to any code, however it is computationally expensive. Therefore, it is important to develop efficient techniques which are capable of reducing the calculation time. The first approach is the SVD-UT where the Unscented Transform (UT) algorithm and singular value decomposition (SVD) are combined to generate a minimal sample points. In addition, due to the strong correlation between the input reactivities, the computational time can be further reduced by implementing the Low Rank Approximation (LRA) and revealing the active subspace.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call