Abstract
We have adopted a method to understand uncertainty and interpretability of a Bayesian convolutional neural network for detecting 3D channel geobodies in seismic volumes. We measure heteroscedastic aleatoric uncertainty and epistemic uncertainty. Epistemic uncertainty captures the uncertainty of the network parameters, whereas heteroscedastic aleatoric uncertainty accounts for noise in the seismic volumes. We train a network modified from U-Net architecture on 3D synthetic seismic volumes, and then we apply it to field data. Tests on 3D field data sets from the Browse Basin, offshore Australia, and from Parihaka in New Zealand prove that uncertainty volumes are related to geologic uncertainty, model mispicks, and input noise. We analyze model interpretability on these data sets by creating saliency volumes with gradient-weighted class activation mapping. We find that the model takes a global-to-local approach to localize channel geobodies as well as the importance of different model components in overall strategy. Using channel probability, uncertainty, and saliency volumes, interpreters can accurately identify channel geobodies in 3D seismic volumes and also understand the model predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.