Abstract

Simple functions of radar backscatter coefficients have been proposed as indices of soil moisture and vegetation, such as the radar vegetation index, i.e., RVI, and the soil saturation index, i.e., ms. These indices are ratios of noisy and potentially miscalibrated radar measurements and are therefore particularly susceptible to estimation errors. In this study, we consider uncertainty in satellite estimates of RVI and ms arising from two radar error sources: noise and miscalibration. We derive expressions for the variance and bias in estimates of RVI and ms due to noise. We also derive expressions for the sensitivity of RVI and ms to calibration errors. We use one year (September 1, 2011 to August 31, 2012) of Aquarius scatterometer observations at three polarizations ( σHH, σVV, and σHV) to map predicted error estimates globally, using parameters relevant to the National Aeronautics and Space Administration Soil Moisture Active and Passive satellite mission. We find that RVI is particularly vulnerable to errors in the calibration offset term over lightly vegetated regions, resulting in overestimates of RVI in some arid regions. ms is most sensitive to calibration errors over regions where the dynamic range of the backscatter coefficient is small, including deserts and forests. Noise induces biases in both indices, but they are negligible in both cases; however, it also induces variance, which is large for highly vegetated regions (for RVI) and areas with low dynamic range in backscatter values (for ms). We find that, with appropriate temporal and spatial averaging, noise errors in both indices can be reduced to acceptable levels. Areas sensitive to calibration errors will require masking.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.