Abstract

Abstract Surface roughness plays an important role in the performance of finished structures. The surface quality obtained is enormously affected by cutting parameters. Therefore, the purpose of the present study is to examine the surface roughness value of aluminum 7075 workpiece material during milling operation by considering three steps: (1) the multi-nonlinear regression (MNLR) modeling basis of Taguchi design, (2) optimization based on signal to noise ratio (S/N), and (3) probabilistic uncertainty analysis depending on Monte Carlo technique as a result of depth of cut, cutting speed and feed rate. The depth of cut of 0.2 mm, cutting speed of 900 m × min−1, and feed rate of 0.1 mm × tooth−1 were determined as Taguchi-optimized conditions with a surface roughness of 0.964 μm. In order to justify the surface roughness predicted under optimized conditions in relation to the predicted Taguchi method, three repetitive verification experiments were performed and surface roughness of 0.964 μm ± 0.3 % was achieved. The best-fit MNLR method with an R2 pred (predicted regression coefficient) of 98.02 % is useful for calculating the success of estimating the outcome variable. Monte Carlo simulations were found to be quite effective for identifying the uncertainties in surface roughness that could not be captured by means of deterministic methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.