Abstract

This paper summarizes the results of a comprehensive statistical study of the flexural overstrength ratio for estimation of the probable flexural strength of ductile RC columns with varying geometries and confinement levels. The material and section properties and the analytical model response are modeled as random variables and their effects on section behavior are assessed through statistical evaluation. For randomly sampled values of the considered variables, the sectional analyses are carried out using a computer program that uses various confined and unconfined concrete models to obtain the maximum flexural strength in the moment-curvature relationship. The effect of variability is investigated by examining the response distributions resulting from Monte Carlo simulations. Furthermore, a simple expression is derived for estimation of the probable flexural strength using the flexural overstrength ratio with the 10% probability of being exceeded. Finally, the proposed method is compared with ACI 318, Eurocode 8, and the Turkish seismic design code provisions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.