Abstract

This paper analyses the problem of epistemic uncertainty in assessing the performance of safety instrumented systems (SIS) using fault trees. The imperfect knowledge concerns the common cause failure (CCF) involved in the SIS in low demand mode. The point-valued CCF factors are replaced by fuzzy numbers, allowing experts to express their uncertainty about the CCF values. This paper shows how these uncertainties propagate through the fault tree and how this induces an uncertainty to the values of the SIS failure probability on demand and to the safety integrity level of the SIS. For the sake of verification and comparison, and to show the exactness of the approach, a Monte Carlo sampling approach is proposed, where by a uniform or triangular second-order probability distribution of CCF factors is considered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call