Abstract

In the present study, for the first time, a new framework is used by combining metaheuristic algorithms, decomposition and machine learning for flood frequency analysis under climate-change conditions and application of HadCM3 (A2 and B2 scenarios), CGCM3 (A2 and A1B scenarios) and CanESM2 (RCP2.6, RCP4.5 and RCP8.5 scenarios) in global climate models (GCM). In the proposed framework, Multivariate Adaptive Regression Splines (MARS) and M5 Model tree are used for classification of precipitation (wet and dry days), whale optimization algorithm (WOA) is considered for training least square support vector machine (LSSVM), wavelet transform (WT) is used for decomposition of precipitation and temperature, LSSVM-WOA, LSSVM, K nearest neighbor (KNN) and artificial neural network (ANN) are performed for downscaling precipitation and temperature, and discharge is simulated under present period (1972–2000), near future (2020–2040) and far future (2070–2100). Log normal distribution is used for flood frequency analysis. Furthermore, analysis of variance (ANOVA) and fuzzy method are employed for uncertainty analysis. Karun3 Basin, in southwest of Iran, is considered as a case study. Results indicated that MARS performed better than M5 model tree. In downscaling, ANN and LSSVM_WOA slightly outperformed other machine learning algorithms. Results of simulating the discharge showed superiority of LSSVM_WOA_WT algorithm (Nash-Sutcliffe efficiency (NSE) = 0.911). Results of flood frequency analysis revealed that 200-year discharge decreases for all scenarios, except CanESM2 RCP2.6 scenario, in the near future. In the near and far future periods, it is obvious from ANOVA uncertainty analysis that hydrological models are one of the most important sources of uncertainty. Based on the fuzzy uncertainty analysis, HadCM3 model has lower uncertainty in higher return periods (up to 60% lower than other models in 1000-year return period).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.