Abstract

The Storm Water Management Model's quality module is calibrated for a section of Québec City's sewer system using data collected during five rain events. It is shown that even for this simple model, calibration can fail: similarly a good fit between recorded data and simulation results can be obtained with quite different sets of model parameters, leading to great uncertainty on calibrated parameter values. In order to further investigate the lack of data and data uncertainty impacts on calibration, we used a new methodology based on the Metropolis Monte Carlo algorithm. This analysis shows that for a large amount of calibration data generated by the model itself, small data uncertainties are necessary to significantly decrease calibrated parameter uncertainties. This also confirms the usefulness of the Metropolis algorithm as a tool for uncertainty analysis in the context of model calibration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.