Abstract
Superelastic shape memory alloys (SMAs) are capable of recovering large inelastic deformation and dissipating energy under loading reversals, and therefore present promising application in vibration control of engineering structures subjected to dynamic loads. Properties of SMAs are often optimised based on experimental results and treated as deterministic for dynamic analysis of structures with SMA-based devices. This study applies the Metropolis–Hasting algorithm to characterise the uncertainties within an SMA material model and to provide insight into its parameter uncertainty. Cyclic tests of SMA bars are first conducted and the experimental data are analysed using the Markov chain Monte Carlo method. The statistical properties of SMA model parameters are calculated based on posterior parameter distributions. The influence of SMA model parameter uncertainty is further explored on energy dissipation capacity under cyclic tests. The first four L-moment method is applied to transform the posterior parameter distributions into standard normal distribution to further evaluate the influence of model parameter uncertainty on energy dissipation in dynamic analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.