Abstract

This research was motivated by technical-economic challenges imposed by mass metrology, specifically, in matters concerning calibration methods of non-automatic type weighing instruments (i.e.: digital scales). In order to contextualize the problem detected, in the industry there are different processes of mass measurement that are controlled by digital scales, such as: mass of liquids, chemicals, food, body mass of a person. In these processes, the scale is used in the following four conditions for mass measurement: (i) ascending and descending load, returned to zero; (ii) ascending and descending load, without the need to return to zero; (iii) only with ascending load and (iv) only with descending load. In this context and, maintaining the principles for the calibration of a measurement instrument in which it must be carried out under the same operating conditions as the instrument, metrology laboratories must knowing the metrological reliability (i.e.: errors and uncertainties) for each situation. This is exactly the main motivation for the development of the research. Thus, the experimental data obtained in a research laboratory under controlled environmental conditions allowed obtaining a minimum expanded uncertainty associated with the mass measurement of 0.0012 kg (k=2; confidence level: 95%).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.