Abstract

Improved radiotherapy dose delivery techniques over the past decade have increased the necessity for accurate, independent verification of delivered dose. Compton camera imaging (CCI) systems may have the potential to quantitatively reconstruct three-dimensional dose delivered to the patient with little or no a priori information. In this work, the adequacy of a Compton camera imaging system for application to radiotherapy dose reconstruction is explored using analytical models of system spatial and dosimetric resolution. The effects of scatter and absorption detector energy resolution, initial photon energy, and detector separation distance on system performance were calculated with the goal of determining whether current detector technology is adequate for such an application. Results indicate that the energy and spatial resolutions associated with current Si and Ge double-sided strip detectors in a planar configuration is sufficient to determine dose deposition to within an average of 1.9 mm and 2.5%. Minimum values of less than 0.5 mm and 1% are achievable under certain conditions. As the energy of the photon incident on the patient increases from 1.0 to 10 MeV, system performance improves at the expense of the range of patient and detector scattering angles over which the system is capable of reconstructing dose deposition to within the acceptable upper limits of 5 mm and 5%. System performance also improves with increasing distance between the scatter and absorption detectors, but is acceptable throughout the range of values likely to be associated with a gantry-mounted system (2-20 cm). The results indicate that Compton camera imaging systems based on current solid-state detector technology have the potential to provide independent verification of dose delivered to a patient during radiation therapy. Further consideration must be given to detector efficiency and image reconstruction algorithms for this application of CCI systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call