Abstract

The performance of a product varies with respect to time and space if the associated limit-state function involves time and space. This study develops an uncertainty analysis method that quantifies the effect of random input variables on the performance (response) over time and space. The combination of the first order reliability method (FORM) and the second-order reliability method (SORM) is used to approximate the extreme value of the response with respect to space at discretized instants of time. Then the response becomes a Gaussian stochastic process that is fully defined by the mean, variance, and autocorrelation functions obtained from FORM and SORM, and a sequential single loop procedure is performed for spatial and random variables. The method is successfully applied to the reliability analysis of a crank-slider mechanism, which operates in a specified period of time and space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.