Abstract

In this paper, the fuel delivery subsystem (FDS) with hydrogen recirculation and anode bleeding is applied in proton exchange membrane fuel cell (PEMFC) system, which is utilized to supply hydrogen to the anode of stack and recirculate fuel back to the supply line. As the diffusion of nitrogen from cathode to anode is inevitable in a real PEMFC during long-term operation. To prevent system performance decline due to nitrogen accumulation. Therefore, this paper firstly develops a control-oriented nonlinear dynamic FDS model involving gas diffusion. Additionally, the FDS is very sensitive to operating environment, uncontrolled operation conditions may cause stack degradation. Specifically, a method based on Monte Carlo simulation is proposed to identify the key parameter boundaries. Then the gas distribution in FDS due to nitrogen crossover is analyzed in detail. After this, a hybrid robust methodology based on sliding mode algorithm is also proposed to maintain adequate hydrogen pressure supply, suitable hydrogen and nitrogen content in the system in presence of nitrogen crossover and renewed uncertainties. Finally, the performance of the presented controller is compared with nonlinear PID (NPID) control and nonlinear multi-input-multi-output (NMIMO) control through a hardware-in-the-loop test bench. Experimental results show that the hybrid controller is accurate and suitable for control purpose, the nitrogen content is restricted to the given range and the variation of output voltage is limited to the desired boundaries, the feasibility and effectiveness are validated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.