Abstract

As information ages, it may become less accurate, resulting in increased uncertainty for decision makers. For example, chemical alarm cues (AC) are a source of public information about a nearby predator attack, and these cues can become spatially inaccurate through time. These cues can also degrade quickly under natural conditions, and cue receivers are sensitive to such degradation. Although numerous studies have documented predator-recognition learning from fresh AC, no studies have explored learning from aged AC and whether the uncertainty associated with this older information contributes to shortening the retention of learned responses (i.e. the 'memory window'). Here, we found that wood frog tadpoles, Lithobates sylvaticus, learned to recognize a novel odour as a predator when paired with AC aged under natural conditions for up to 1 h. However, only tadpoles conditioned with fresh AC were found to retain this learned response when tested 9 days after conditioning. These results support the hypothesis that the memory window is shortened by the uncertainty associated with older information, preventing the long-term costs of a learned association that was based on potentially outdated information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.