Abstract
Surface turbulent exchanges play a key role on sea ice dynamics, on ocean and sea ice heat budgets and on the polar atmosphere. Uncertainties in parameterizations of surface turbulent fluxes are mostly held by the transfer coefficients and estimates of those transfer coefficients from field data are required for parameterization development. Measurement errors propagate through the computation of transfer coefficients and contribute to its total error together with the uncertainties in the empirical stability functions used to correct for stability effects. Here we propose a methodology to assess their contributions individually to each coefficient estimate as well as the total drag coefficient uncertainty and we apply this methodology on the example of the SHEBA campaign. We conclude that for most common drag coefficient values (between 1.0×10-3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$1.0\ imes 10^{-3}$$\\end{document} and 2.5×10-3\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$2.5\ imes 10^{-3}$$\\end{document}), the relative total uncertainty ranges from 25 and 50%\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\%$$\\end{document}. For stable or unstable conditions with a stability parameter |ζ|>1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$|\\zeta |>1$$\\end{document} on average, the total uncertainty in the neutral drag coefficient exceeds the neutral drag coefficient value itself, while for |ζ|<1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$|\\zeta |<1$$\\end{document} the total uncertainty is around 25%\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\%$$\\end{document} of the drag coefficient. For closer-to-neutral conditions, this uncertainty is dominated by measurement uncertainties in surface turbulent momentum fluxes which should therefore be the target of efforts in uncertainty reduction. We also propose an objective data-screening procedure for field data, which consists of retaining data for which the relative error on neutral drag coefficient does not exceed a given threshold. This method, in addition to the commonly used flux quality control procedure, allows for a reduction of the drag coefficient dispersion compared to other data-screening methods, which we take as an indication of better dataset quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.