Abstract
Abstract In order to exactly evaluate the seismic collapse capacity of a structure, probabilistic approach is required by considering uncertainties related to its structural properties and ground motion. Regardless of the types of uncertainties, they influence on the seismic response of a structures and their effects are required to be estimated. An incremental dynamic analysis(IDA) is useful to investigate uncertainty-propagation due to ground motion. In this study, a 3-story steel moment-resisting frame is selected for a prototype frame and analyzed using the IDA. The uncertainty-propagation is assessed with categorized parameters representing epistemic uncertainties, such as the seismic weight, the inherent damping, the yield strength, and the elastic modulus. To do this, the influence of the uncertainty-propagation to the seismic collapse capacity of the prototype frame is probabilistically evaluated using the incremental dynamic analyses based on the Monte-Carlo simulation sampling with the Latin hypercube method. Of various parameters related to epistemic uncertainty-propagation, the inherent damping is investigated to be the most influential parameter on the seismic collapse capacity of the prototype frame.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Computational Structural Engineering Institute of Korea
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.