Abstract

Abstract This study addresses the sensitivity of backward trajectories within simulated near-surface mesocyclones to the spatiotemporal resolution of the velocity field. These backward trajectories are compared to forward trajectories computed during run time within the numerical model. It is found that the population of backward trajectories becomes increasingly contaminated with “inflow trajectories” that owe their existence to spatiotemporal interpolation errors in time-varying and strongly curved, confluent flow. These erroneous inflow parcels may mistakenly be interpreted as a possible source of air for the near-surface vortex. It is hypothesized that, unlike forward trajectories, backward trajectories are especially susceptible to errors near the strongly confluent intensifying vortex. Although the results are based on model output, dual-Doppler analysis fields may be equally affected by such errors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.