Abstract

ABSTRACT Kappa (the high-frequency spectral decay slope at near-source distances; often referred to as κ0) is determined at 25 seismograph stations in Eastern Canada using broadband ground-motion modeling approaches. The database comprises Fourier spectra (effective amplitude spectrum for the horizontal component and the vertical component, 0.8–40 Hz) computed from 3318 earthquakes of moment magnitude M 1.5–5 recorded on stations within 150 km. Average kappa values for bedrock sites, having shear-wave velocities from 850 to 2400 m/s, are highly variable, ranging from −29 to +21 ms (horizontal) and −28 to +11 ms (vertical), but appear on average to be near-zero. The values obtained are sensitive to methodology, especially the necessary adjustments to the spectra to account for site amplification effects. Kappa values do not appear to correlate well with site parameters such as rock shear-wave velocity, average shear-wave velocity in the upper 30 m, primary wave velocity, site class, type and age of rock, or instrument housing. This lack of correlation may reflect the noted sensitivities to methodological factors. We conclude that kappa values in rock environments are not reliably estimated from such proxies and should be determined from recorded ground motions at a given location. On average, there is little evidence of significant high-frequency attenuation on rock sites beyond that already accounted for in ground-motion modeling by the empirical parameterization of regional Q-related path effects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.