Abstract
A new approach to computational fluid dynamics code validation is developed that gives proper consideration to experimental and simulation uncertainties. The comparison error is defined as the difference between the data and simulation values and represents the combination of all errors. The validation uncertainly is defined as the combination of the uncertainties in the experimental data and the portion of the uncertainties in the CFD prediction that can be estimated. This validation uncertainty sets the level at which validation can be achieved. The criterion for validation is that the magnitude of the comparison error must be less than the validation uncertainty. If validation is not accomplished, the magnitude and sign of the comparison error can be used to improve the mathematical modeling. Consideration is given to validation procedures for a single code, multiple codes and/or models, and predictions of trends. Example results of verification/validation are presented for a single computational fluid dynamics code and for a comparison of multiple turbulence models. The results demonstrate the usefulness of the proposed validation strategy. This new approach for validation should be useful in guiding future developments in computational fluid dynamics through validation studies and in the transition of computational fluid dynamics codes to design.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.