Abstract

The uncertain volatility model has long ago attracted the attention of practitioners as it provides worst-case pricing scenario for the sell-side. The valuation of a financial derivative based on this model requires solving a fully non-linear PDE. One can rely on finite difference schemes only when the number of variables (that is, underlyings and path-dependent variables) is small - in practice no more than three. In all other cases, numerical valuation seems out of reach. In this paper, we outline two accurate, easy-to-implement Monte-Carlo-like methods which hardly depend on dimensionality. The first method requires a parameterization of the optimal covariance matrix and consists in a series of backward low-dimensional optimizations. The second method relies heavily on a recently established connection between second-order backward stochastic differential equations and non-linear second-order parabolic PDEs. Both methods are illustrated by numerical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.