Abstract

The shortest path problem is considered as one of the essential problems in network optimization with a wide range of real-world applications. Modelling such real-world applications involves various indeterminate phenomena which can be estimated through human beliefs. The uncertainty theory proposed by Liu (Uncertain theory, 2nd edn., Springer, Berlin, 2007) is widely regarded as a legitimate tool to deal with such uncertainty. This paper presents an uncertain multi-objective shortest path problem (UMSPP) for a weighted connected directed graph (WCDG), where every edge weight is associated with two uncertain parameters: cost and time. These parameters are represented as uncertain variables. Here, we have formulated the expected value model and chance-constrained model of the proposed UMSPP, and the corresponding deterministic transformation of these models is also presented. Subsequently, the deterministic models are solved with a classical multi-objective solution method, namely the global criterion method. Furthermore, two multi-objective genetic algorithms (MOGAs): nondominated sorting genetic algorithm II (NSGA-II) and multi-objective cross-generational elitist selection, heterogeneous recombination and cataclysmic mutation (MOCHC), are employed to solve these models. A suitable example is provided to illustrate the proposed model. Finally, the performance of MOGAs is compared for five randomly generated instances of UMSPP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call