Abstract

This paper presents the quantification of uncertain natural frequency for laminated composite plates by using a novel surrogate model. A group method of data handling in conjunction to polynomial neural network (PNN) is employed as surrogate for numerical model and is trained by using Latin hypercube sampling. Subsequently the effect of noise on a PNN based uncertainty quantification algorithm is explored in this study. The convergence of the proposed algorithm for stochastic natural frequency analysis of composite plates is verified and validated with original finite element method (FEM). Both individual and combined variation of stochastic input parameters are considered to address the influence on the output of interest. The sample size and computational cost are reduced by employing the present approach compared to direct Monte Carlo simulation (MCS).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.