Abstract
Conventional unsupervised learning algorithms require knowledge of the desired number of clusters beforehand. Even if such knowledge is not required in advance, empirical selection of the parameter values may limit the adaptive capability of the algorithm, thereby restricting the clustering performance. An inherent uncertainty in the number and size of clusters requires integration of fuzzy sets into a clustering algorithm. In this paper, we propose a type-1 (T1) fuzzy ART method that adaptively selects the vigilance parameter value, which is critical in determining the network dynamics. This results in improved clustering performance due to the added flexibility in dynamic selection of the number of clusters with the use of fuzzy sets. To further manage the uncertainty associated with memberships, we extend the proposed T1 fuzzy ART with adaptive vigilance to an interval type-2 (IT2) fuzzy ART method. Type reduction and defuzzification are then performed using the KM algorithm to obtain a defuzzified vigilance parameter value. We evaluate our proposed methods on several data sets to validate their effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.