Abstract

Recently, it was demonstrated both theoretically and experimentally on the D-Wave quantum annealer that transverse-field quantum annealing does not find all ground states with equal probability. In particular, it was proposed that more complex driver Hamiltonians beyond transverse fields might mitigate this shortcoming. Here, we investigate the mechanisms of (un)fair sampling in quantum annealing. While higher-order terms can improve the sampling for selected small problems, we present multiple counterexamples where driver Hamiltonians that go beyond transverse fields do not remove the sampling bias. Using perturbation theory we explain why this is the case. In addition, we present large-scale quantum Monte Carlo simulations for spin glasses with known degeneracy in two space dimensions and demonstrate that the fair-sampling performance of quadratic driver terms is comparable to standard transverse-field drivers. Our results suggest that quantum annealing machines are not well suited for sampling applications, unless post-processing techniques to improve the sampling are applied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.