Abstract
As the increasing availability and use of dynamic mobile communications, information from an Internet of Things (IoT) subset of devices, known as Internet of Connected Vehicles (IoCV), is collected with a level of uncertainty. To bridge this gap of data analytics, some studies take two factors individually to mine knowledge or information, such as uncertainty and utility as two exemplary factors. However, this approach may cause actual loss of knowledge integrity. In this work, our first result is a knowledge called High Expected Utility Sequential Patterns (HEUSPs) that is both novel and also provides an alternative option for knowledge discovery regarding utility and uncertainty factors by a single threshold in IoCV environments. Furthermore, two PUL-Chain and EUL-Chain structures with six pruning methodologies are respectively developed to maintain information that is necessary and reduce the search space for improving mining performance. Our experimental results show both efficiency and strength of the designed algorithm compared to HUS-Span which is considered to be the current standard in utility-oriented sequential pattern mining.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Intelligent Transportation Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.