Abstract

<span>A dc-dc zeta converter is a switch mode dc-dc converter that can either step-up or step-down dc input voltage. In order to regulate the dc output voltage, a control subsystem needs to be deployed for the dc-dc zeta converter. This paper presents the dc-dc zeta converter control. Unlike conventional dc-dc zeta converter control which produces a controller based on the nominal value model, we propose a convex polytope model of the dc-dc zeta converter which takes into account parameter uncertainty. A linear matrix inequality (LMI) is formulated based on the linear quadratic regulator (LQR) problem to find the state-feedback controller for the convex polytope model. Simulation results are presented to compare the control performance between the conventional LQR and the proposed LMI based controller on the dc-dc zeta converter. Furthermore, the reduction technique of the convex polytope is proposed and its effect is investigated.</span>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call