Abstract

The purpose of this study is to predict with the use of FEA, the differing predisposition to cortical bone resorption and subsequent distal migration of an un-cemented femoral hip replacement stem subjected to long term biomechanical high compressive stresses, while varying the load angles, the material properties of the stem, and the stem length. A two-dimensional hip model was constructed to estimate the minimum principle stresses (P3) and migration magnitudes. Bone remodeling at the interface between the bone and the prosthesis was performed by comparison of the local compressive stress to physiological stress values governing bone resorption. With respect to load angles, migrations of the hip prosthesis did not occur with load angles between 63° and 74° load angle in relation to the longitudinal axis of the bony femur, as the compressive stress generated on the cortical bone was under the criteria threshold for bone resorption (-50MPa). In addition, the magnitude of migration (17%decrease) was relatively more sensitive to changes in stem length than those (92%decrease) of changes of material properties. In conclusion, using an FEA model for bone remodeling, based on the high compressive stresses exerted on distal cortical bone, it is possible to estimate migration magnitudes of cementless hip prostheses in the long term. The load angles have been shown to be an important parameter affecting the migration magnitudes and furthermore, it can be demonstrated that the stiffer materials and reduction of stem length can decrease the migration of cementless hip prosthesis in the long term.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.