Abstract

In this paper, we study a topological phase transition in a wire medium operating at infrared frequencies. This transition occurs in the reciprocal space between the indefinite (open-surface) regime of the metamaterial and its dielectric (closed-surface) regime. Due to the spatial dispersion inherent to a wire medium, a hybrid regime turns out to be possible at the transition frequency. Both such surfaces exist at the same frequency and touch one another. At this frequency, all values of the parallel wave vector correspond to propagating spatial harmonics. The implication of this regime is the overwhelming radiation enhancement. We numerically investigate the gain in radiated power for a subwavelength dipole source submerged into such medium. In contrast to previous works, this gain (called the Purcell factor) turns out to be higher for a parallel dipole than for a perpendicular one.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.