Abstract

This paper is concerned with solvability of the second-order nonlinear neutral delay difference equation <svg style="vertical-align:-6.19302pt;width:554.88751px;" id="M1" height="23.549999" version="1.1" viewBox="0 0 554.88751 23.549999" width="554.88751" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,15.775)"><path id="x394" d="M600 0h-557v24l268 633l28 8l261 -641v-24zM497 50l-194 489l-196 -489h390z" /></g> <g transform="matrix(.012,-0,0,-.012,10.963,7.613)"><path id="x32" d="M412 140l28 -9q0 -2 -35 -131h-373v23q112 112 161 170q59 70 92 127t33 115q0 63 -31 98t-86 35q-75 0 -137 -93l-22 20l57 81q55 59 135 59q69 0 118.5 -46.5t49.5 -122.5q0 -62 -29.5 -114t-102.5 -130l-141 -149h186q42 0 58.5 10.5t38.5 56.5z" /></g> <g transform="matrix(.017,-0,0,-.017,17.287,15.775)"><path id="x28" d="M300 -147l-18 -23q-106 71 -159 185.5t-53 254.5v1q0 139 53 252.5t159 186.5l18 -24q-74 -62 -115.5 -173.5t-41.5 -242.5q0 -130 41.5 -242.5t115.5 -174.5z" /></g><g transform="matrix(.017,-0,0,-.017,23.169,15.775)"><path id="x1D465" d="M536 404q0 -17 -13.5 -31.5t-26.5 -14.5q-8 0 -15 10q-11 14 -25 14q-22 0 -67 -50q-47 -52 -68 -82l37 -102q31 -88 55 -88t78 59l16 -23q-32 -48 -68.5 -78t-65.5 -30q-19 0 -37.5 20t-29.5 53l-41 116q-72 -106 -114.5 -147.5t-79.5 -41.5q-21 0 -34.5 14t-13.5 37&#xA;q0 16 13.5 31.5t28.5 15.5q12 0 17 -11q5 -10 25 -10q22 0 57.5 36t89.5 111l-40 108q-22 58 -36 58q-21 0 -67 -57l-19 20q81 107 125 107q17 0 30 -22t39 -88l22 -55q68 92 108.5 128.5t74.5 36.5q20 0 32.5 -14t12.5 -30z" /></g> <g transform="matrix(.012,-0,0,-.012,32.675,19.862)"><path id="x1D45B" d="M495 86q-46 -47 -87 -72.5t-63 -25.5q-43 0 -16 107l49 210q7 34 8 50.5t-3 21t-13 4.5q-35 0 -109.5 -72.5t-115.5 -140.5q-21 -75 -38 -159q-50 -10 -76 -21l-6 8l84 340q8 35 -4 35q-17 0 -67 -46l-15 26q44 44 85.5 70.5t64.5 26.5q35 0 10 -103l-24 -98h2&#xA;q42 56 97 103.5t96 71.5q46 26 74 26q9 0 16 -2.5t14 -11.5t9.5 -24.5t-1 -44t-13.5 -68.5q-30 -117 -47 -200q-4 -19 -3.5 -25t6.5 -6q21 0 70 48z" /></g> <g transform="matrix(.017,-0,0,-.017,43.05,15.775)"><path id="x2B" d="M535 230h-212v-233h-58v233h-213v50h213v210h58v-210h212v-50z" /></g><g transform="matrix(.017,-0,0,-.017,56.802,15.775)"><path id="x1D44E" d="M483 97q-42 -50 -88.5 -79.5t-68.5 -29.5q-37 0 -17 93l22 102h-2q-54 -79 -144 -149q-59 -46 -100 -46q-24 0 -43 29t-19 86q0 78 34.5 153t94.5 120q41 31 94 51.5t98 20.5q29 0 72 -9q26 -6 39 -6l2 -4q-30 -117 -67 -323q-8 -41 2 -41q16 0 79 58zM374 387&#xA;q-32 15 -73 15q-52 0 -83 -23q-48 -36 -78 -108.5t-30 -152.5q0 -33 8.5 -50.5t20.5 -17.5q31 0 107 79t99 132q15 40 29 126z" /></g> <g transform="matrix(.012,-0,0,-.012,65.412,19.862)"><use xlink:href="#x1D45B"/></g> <g transform="matrix(.017,-0,0,-.017,72,15.775)"><use xlink:href="#x1D465"/></g> <g transform="matrix(.012,-0,0,-.012,81.5,19.862)"><use xlink:href="#x1D45B"/></g><g transform="matrix(.012,-0,0,-.012,87.473,19.862)"><path id="x2212" d="M535 230h-483v50h483v-50z" /></g><g transform="matrix(.012,-0,0,-.012,94.458,19.862)"><path id="x1D70F" d="M471 456q-22 -60 -37 -85q-20 -3 -84 -3q-9 0 -29 2t-29 2q-38 -145 -54 -234q-15 -80 14 -80q23 0 68 38l14 -25q-78 -83 -137 -83q-50 0 -50 64q0 25 7 57l67 266q-57 4 -98 -9t-80 -49l-20 21q14 18 27 31t36.5 30t56.5 26t73 9q26 0 82.5 -2t89.5 -2q21 0 32 5t24 24&#xA;z" /></g> <g transform="matrix(.017,-0,0,-.017,100.838,15.775)"><path id="x29" d="M275 270q0 -296 -211 -440l-19 23q75 62 116.5 174t41.5 243t-42 243t-116 173l19 24q211 -144 211 -440z" /></g><g transform="matrix(.017,-0,0,-.017,110.476,15.775)"><use xlink:href="#x2B"/></g><g transform="matrix(.017,-0,0,-.017,124.245,15.775)"><use xlink:href="#x394"/></g><g transform="matrix(.017,-0,0,-.017,135.141,15.775)"><path id="x210E" d="M499 88q-41 -46 -83.5 -73t-68.5 -27q-41 0 -19 98l52 225q10 43 8 59.5t-16 16.5q-37 0 -112 -65t-117 -135q-14 -42 -38 -179q-36 -7 -75 -20l-7 8l127 594q8 40 2.5 49t-35.5 9h-35l5 25q36 3 71.5 13t56.5 18t25 8q11 0 3 -38l-88 -417h2q77 102 195 167q44 24 79 24&#xA;q61 0 30 -130l-52 -220q-8 -33 4 -33q8 0 31 14.5t43 33.5z" /></g><g transform="matrix(.017,-0,0,-.017,143.912,15.775)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,149.794,15.775)"><use xlink:href="#x1D45B"/></g><g transform="matrix(.017,-0,0,-.017,158.327,15.775)"><path id="x2C" d="M95 130q31 0 61 -30t30 -78q0 -53 -38 -87.5t-93 -51.5l-11 29q77 31 77 85q0 26 -17.5 43t-44.5 24q-4 0 -8.5 6.5t-4.5 17.5q0 18 15 30t34 12z" /></g><g transform="matrix(.017,-0,0,-.017,165.025,15.775)"><use xlink:href="#x1D465"/></g> <g transform="matrix(.012,-0,0,-.012,174.538,19.862)"><use xlink:href="#x210E"/></g> <g transform="matrix(.008,-0,0,-.008,180.688,22.712)"><path id="x31" d="M384 0h-275v27q67 5 81.5 18.5t14.5 68.5v385q0 38 -7.5 47.5t-40.5 10.5l-48 2v24q85 15 178 52v-521q0 -55 14.5 -68.5t82.5 -18.5v-27z" /></g><g transform="matrix(.008,-0,0,-.008,184.767,22.712)"><use xlink:href="#x1D45B"/></g> <g transform="matrix(.017,-0,0,-.017,190.275,15.775)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,196.973,15.775)"><use xlink:href="#x1D465"/></g> <g transform="matrix(.012,-0,0,-.012,206.488,19.862)"><use xlink:href="#x210E"/></g> <g transform="matrix(.008,-0,0,-.008,212.625,22.712)"><use xlink:href="#x32"/></g><g transform="matrix(.008,-0,0,-.008,216.704,22.712)"><use xlink:href="#x1D45B"/></g> <g transform="matrix(.017,-0,0,-.017,222.212,15.775)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,228.91,15.775)"><path id="x2026" d="M160 -12q-24 0 -39.5 16t-15.5 42q0 24 16 40.5t40 16.5t40 -16.5t16 -40.5q0 -26 -16 -42t-41 -16zM485 -12q-24 0 -39.5 16t-15.5 42q0 24 16 40.5t40 16.5t40 -16.5t16 -40.5q0 -26 -16 -42t-41 -16zM806 -12q-24 0 -39.5 16t-15.5 42q0 24 16 40.5t40 16.5t40 -16.5&#xA;t16 -40.5q0 -26 -15.5 -42t-41.5 -16z" /></g><g transform="matrix(.017,-0,0,-.017,248.238,15.775)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,254.952,15.775)"><use xlink:href="#x1D465"/></g> <g transform="matrix(.012,-0,0,-.012,264.462,19.862)"><use xlink:href="#x210E"/></g> <g transform="matrix(.008,-0,0,-.008,270.6,22.712)"><path id="x1D458" d="M480 416q0 -21 -18 -41q-9 -11 -17 -7q-20 9 -42 9q-62 0 -140 -78q23 -69 88 -192q17 -31 27 -42t20 -11q16 0 62 46l17 -20q-64 -92 -119 -92q-35 0 -70 66q-41 73 -84 187q-36 -30 -62 -61q-27 -115 -35 -172q-41 -8 -78 -20l-6 6l140 612q7 28 0.5 34t-37.5 7l-34 1&#xA;l5 26q38 4 74 13.5t57 17t25 7.5q12 0 4 -32l-104 -443h2q35 38 97 93q39 35 65.5 56t62 41.5t58.5 20.5q19 0 30.5 -10t11.5 -22z" /></g><g transform="matrix(.008,-0,0,-.008,274.875,22.712)"><use xlink:href="#x1D45B"/></g> <g transform="matrix(.017,-0,0,-.017,280.388,15.775)"><use xlink:href="#x29"/></g><g transform="matrix(.017,-0,0,-.017,290.043,15.775)"><use xlink:href="#x2B"/></g><g transform="matrix(.017,-0,0,-.017,303.795,15.775)"><path id="x1D453" d="M619 670q0 -13 -9 -26t-18 -19q-13 -10 -25 2q-36 38 -66 38q-31 0 -54.5 -50t-45.5 -185h120l-20 -31l-107 -12q-23 -138 -57 -293q-27 -122 -55 -184.5t-75 -109.5q-60 -61 -114 -61q-25 0 -47.5 15t-22.5 31q0 17 31 44q11 8 20 -1q10 -11 31 -19t35 -8q26 0 47 19&#xA;q34 34 71 253l54 315h-90l-3 12l31 30h70q28 138 90 204q35 37 75 57.5t70 20.5q26 0 45 -14t19 -28z" /></g><g transform="matrix(.017,-0,0,-.017,314.708,15.775)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,320.59,15.775)"><use xlink:href="#x1D45B"/></g><g transform="matrix(.017,-0,0,-.017,329.123,15.775)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,335.82,15.775)"><use xlink:href="#x1D465"/></g> <g transform="matrix(.012,-0,0,-.012,345.338,19.862)"><use xlink:href="#x1D453"/></g> <g transform="matrix(.008,-0,0,-.008,352.975,23.387)"><use xlink:href="#x31"/></g><g transform="matrix(.008,-0,0,-.008,357.054,23.387)"><use xlink:href="#x1D45B"/></g> <g transform="matrix(.017,-0,0,-.017,362.575,15.775)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,369.273,15.775)"><use xlink:href="#x1D465"/></g> <g transform="matrix(.012,-0,0,-.012,378.787,19.862)"><use xlink:href="#x1D453"/></g> <g transform="matrix(.008,-0,0,-.008,386.425,23.387)"><use xlink:href="#x32"/></g><g transform="matrix(.008,-0,0,-.008,390.504,23.387)"><use xlink:href="#x1D45B"/></g> <g transform="matrix(.017,-0,0,-.017,396.012,15.775)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,402.71,15.775)"><use xlink:href="#x2026"/></g><g transform="matrix(.017,-0,0,-.017,422.038,15.775)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,428.735,15.775)"><use xlink:href="#x1D465"/></g> <g transform="matrix(.012,-0,0,-.012,438.25,19.862)"><use xlink:href="#x1D453"/></g> <g transform="matrix(.008,-0,0,-.008,445.888,23.387)"><use xlink:href="#x1D458"/></g><g transform="matrix(.008,-0,0,-.008,450.162,23.387)"><use xlink:href="#x1D45B"/></g> <g transform="matrix(.017,-0,0,-.017,455.675,15.775)"><use xlink:href="#x29"/></g><g transform="matrix(.017,-0,0,-.017,466.282,15.775)"><path id="x3D" d="M535 323h-483v50h483v-50zM535 138h-483v50h483v-50z" /></g><g transform="matrix(.017,-0,0,-.017,480.969,15.775)"><path id="x1D44F" d="M452 333q0 -82 -46 -164t-116 -128q-81 -53 -158 -53q-26 0 -51 13t-37 32q-26 41 -6 134l91 431q7 40 2.5 47t-34.5 7h-33l2 25q36 4 72.5 13t58.5 15.5t28 6.5q10 0 4 -29l-91 -391h2q65 77 130 116.5t105 39.5q36 0 56.5 -32t20.5 -83zM365 316q0 76 -35 76&#xA;q-31 0 -93.5 -49t-107.5 -110q-12 -37 -17 -70q-9 -65 12 -96.5t59 -31.5q31 0 56 14q53 29 89.5 105t36.5 162z" /></g> <g transform="matrix(.012,-0,0,-.012,488.963,19.862)"><use xlink:href="#x1D45B"/></g> <g transform="matrix(.017,-0,0,-.017,495.55,15.775)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,502.248,15.775)"><path id="x2200" d="M563 650l-246 -665h-61l-246 665h61l86 -234h259l86 234h61zM397 366h-221l110 -298h1z" /></g><g transform="matrix(.017,-0,0,-.017,511.988,15.775)"><use xlink:href="#x1D45B"/></g><g transform="matrix(.017,-0,0,-.017,525.247,15.775)"><path id="x2265" d="M531 285l-474 -214v56l416 183l-416 184v56l474 -215v-50zM531 -40h-474v50h474v-50z" /></g><g transform="matrix(.017,-0,0,-.017,539.951,15.775)"><use xlink:href="#x1D45B"/></g> <g transform="matrix(.012,-0,0,-.012,548.488,19.862)"><path id="x30" d="M241 635q53 0 94 -28.5t63.5 -76t33.5 -102.5t11 -116q0 -58 -11 -112.5t-34 -103.5t-63.5 -78.5t-94.5 -29.5t-95 28t-64.5 75t-34.5 102.5t-11 118.5q0 58 11.5 112.5t34.5 103t64.5 78t95.5 29.5zM238 602q-32 0 -55.5 -25t-35.5 -68t-17.5 -91t-5.5 -105&#xA;q0 -76 10 -138.5t37 -107.5t69 -45q32 0 55.5 25t35.5 68.5t17.5 91.5t5.5 105t-5.5 105.5t-18 92t-36 68t-56.5 24.5z" /></g> </svg>. Utilizing the Banach fixed point theorem and some new techniques, we show the existence of uncountably many unbounded positive solutions for the difference equation, suggest several Mann-type iterative schemes with errors, and discuss the error estimates between the unbounded positive solutions and the sequences generated by the Mann iterative schemes. Four nontrivial examples are given to illustrate the results presented in this paper.

Highlights

  • Introduction and PreliminariesRecently, the oscillation, nonoscillation, asymptotic behavior, and existence of solutions of different classes of linear and nonlinear second-order difference equations have been studied by many authors; see, for example, [1–26] and the references cited therein

  • Using the Banach fixed point theorem and the Mann iterative schemes with errors, we discuss the existence of uncountably many unbounded positive solutions of (6), prove that the Mann iterative schemes with errors converge to these unbounded positive solutions, and compute the error estimates between the Mann iterative schemes with errors and the unbounded positive solutions

  • Converges to an unbounded positive solution x ∈ A(N, M) of (6) and has the error estimate (17), where {γm}m∈N0 = {γmn}(m,n)∈N0×Nβ is an arbitrary sequence in A(N, M), and {αm}m∈N0 and {βm}m∈N0 are any sequences in [0, 1] satisfying (18); (b) equation (6) possesses uncountably many unbounded positive solutions in A(N, M)

Read more

Summary

Introduction and Preliminaries

The oscillation, nonoscillation, asymptotic behavior, and existence of solutions of different classes of linear and nonlinear second-order difference equations have been studied by many authors; see, for example, [1–26] and the references cited therein. Using the Banach fixed point theorem, Jinfa [5] discussed the existence of a bounded nonoscillatory solution for the second-order neutral delay difference equation with positive and negative coefficients: Δ2 (xn + pxn−m) + pnxn−k − qnxn−l = 0, ∀n ≥ n0 (1). Migda [16] considered the asymptotic behaviors of nonoscillatory solutions for the second-order neutral difference equation with maxima: Δ2 (xn + pnxn−k) + qn max {xs : n − l ≤ s ≤ n} = 0, ∀n ≥ 1 (2). Meng and Yan [15] studied the existence of bounded nonoscillatory solutions for the second-order nonlinear nonautonomous neutral delay difference equation: m. Nothing has been done with the existence of uncountably many unbounded positive solutions for (1)∼ (5) and any other second-order neutral delay difference equations: Inspired and motivated by the results in [1–26], in this paper we introduce and study the second-order nonlinear neutral delay difference equation: Δ2 (xn + anxn−τ) + Δh

Existence of Uncountably Many Unbounded Positive Solutions
Examples
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call