Abstract

The purpose of this paper is to investigate models of computation from a realistic viewpoint. We introduce the concept of physical computation as opposed to functional computation, and by referring to the laws of physics we study the basic criteria which a model of computation must meet in order to be realistic. With this formal apparatus, we define a very general, realistic model of planar, digital circuits, which allows for full parallelism. This model is especially well suited to describe systolic architectures. Actually, the assumption of planarity serves only practical purposes, and can be removed without altering our main results. We compare the complexity classes in this parallel model with those associated with sequential models such as the Deterministic Turing Machine (DTM) model. Our main result is that both models are space and time equivalent in the polynomial class. In particular, any circuit can be simulated in polynomial time on a DTM. One consequence is that unbounded hardware does not make NP-hardness tractable. We also address the issue of area-time tradeoffs and show that the area of a circuit can always be bounded by a polynomial function of the sequential time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.