Abstract
Unbound states in C17 were investigated via one-neutron removal from a C18 beam at an energy of 245 MeV/nucleon on a carbon target. The energy spectrum of C17, above the single-neutron decay threshold, was reconstructed using invariant mass spectroscopy from the measured momenta of the C16 fragment and neutron, and was found to exhibit resonances at Er=0.52(2), 0.77(2), 1.36(1), 1.91(1), 2.22(3) and 3.20(1) MeV. The resonance at Er=0.77(2) MeV [Ex=1.51(3) MeV] was provisionally assigned as the second 5/2+ state. The two resonances at Er=1.91(1) and 3.20(1) MeV [Ex=2.65(2) and 3.94(2) MeV] were identified, through comparison of the energies, cross sections and momentum distributions with shell-model and eikonal reaction calculations, as p-shell hole states with spin-parities 1/21− and 3/21−, respectively. A detailed comparison was made with the results obtained using a range of shell-model interactions. The YSOX shell-model Hamiltonian, the cross-shell part of which is based on the monopole-based universal interaction, was found to provide a very good description of the present results and those for the neighbouring odd-A carbon isotopes – in particular for the negative parity cross-shell states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.