Abstract

We propose a new model to calculate stellar electron capture rates for neutron-rich nuclei. These nuclei are encountered in the core-collapse of a massive star. Using the Shell Model Monte Carlo approach, we first calculate the finite temperature occupation numbers in the parent nucleus. We then use these occupation numbers as a starting point for calculations using the random phase approximation. Using the RPA approach, we calculate electron capture rates including both allowed and forbidden transitions. Such a hybrid model is particularly useful for nuclei with proton numbers Z<40 and neutron numbers N>40, where allowed Gamow-Teller transitions are only possible due to configuration mixing by the residual interaction and by thermal unblocking of $pf$-shell single-particle states. Using the even germanium isotopes Ge-68 to Ge-76 as examples, we demonstrate that the configuration mixing is strong enough to unblock the Gamow-Teller transitions at all temperatures relevant to core-collapse supernovae.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.