Abstract

Selective binding of aqueous-phase amino acids to mineral surfaces is regarded as a plausible first step in oligopeptide formation on early Earth. To clarify the strength and underlying mechanism of amino acid binding to pyrite surfaces, we measured the unbinding (pull-off) force of ten amino acids and two oligo-peptides from water-pyrite interfaces using atomic force microscopy (AFM). The most probable unbinding force could be described by a linearly increasing function with the size of the amino acid and a characteristic offset. A good correlation was obtained between the most probable unbinding force and the residue volume, surface area and polarizability of samples suggesting at least a partial contribution of van der Waals (vdW) forces, especially the London dispersion force. These results are useful in analysis of adhesion phenomena of amino acids in the given environmental settings such as in this work.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.