Abstract

DNA base editors (BEs) composed of a nuclease-deficient Cas9 fused to a DNA-modifying enzyme can achieve on-target mutagenesis without creating double-strand DNA breaks (DSBs). As a result, BEs generate far less DNA damage than traditional nuclease-proficient Cas9 systems, which do rely on the creation of DSBs to achieve on-target mutagenesis. The inability of BEs to create DSBs makes the detection of their undesired off-target effects very difficult. PacBio HiFi sequencing can efficiently detect ultrarare mutations resulting from chemical mutagenesis in whole genomes with a sensitivity ~1 × 10-8 mutations per base pair. In this proof-of-principle study, we evaluated whether this technique could also detect the on- and off-target mutations generated by a cytosine-to-thymine (C>T) BE targeting the LacZ gene in Escherichia coli (E. coli). HiFi sequencing detected on-target mutant allele fractions ranging from ~7% to ~63%, depending on the single-guide RNA (sgRNA) used, while no on-target mutations were detected in controls lacking the BE. The presence of the BE resulted in a ~3-fold increase in mutation frequencies compared to controls lacking the BE, irrespective of the sgRNA used. These increases were mostly composed of C:G>T:A substitutions distributed throughout the genome. Our results demonstrate that HiFi sequencing can efficiently identify on- and off-target mutations in cell populations that have undergone genome editing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call