Abstract

We propose an unbiased recursive least-squares algorithm for errors-in-variables system identification. The proposed algorithm, called URLS, removes the noise-induced bias when both input and output are contaminated with noise and the input noise is colored and correlated with the output noise. To develop the algorithm, we define an exponentially-weighted least-squares optimization problem that yields an unbiased estimate. Then, we solve the system of linear equations of the associated normal equations utilizing the dichotomous coordinate-descent iterations. The URLS algorithm features significantly reduced computational complexity as well as improved numerical stability compared with a previously proposed bias-compensated recursive least-squares algorithm while having similar estimation performance. We show that the URLS algorithm is asymptotically unbiased and convergent in the mean-square sense. We also calculate its steady-state mean-square deviation. Simulation results corroborate the efficacy of the URLS algorithm and the accuracy of the theoretical findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.