Abstract

Recently, it has been proposed to estimate the noise power spectral density by means of minimum mean-square error (MMSE) optimal estimation. We show that the resulting estimator can be interpreted as a voice activity detector (VAD)-based noise power estimator, where the noise power is updated only when speech absence is signaled, compensated with a required bias compensation. We show that the bias compensation is unnecessary when we replace the VAD by a soft speech presence probability (SPP) with fixed priors. Choosing fixed priors also has the benefit of decoupling the noise power estimator from subsequent steps in a speech enhancement framework, such as the estimation of the speech power and the estimation of the clean speech. We show that the proposed speech presence probability (SPP) approach maintains the quick noise tracking performance of the bias compensated minimum mean-square error (MMSE)-based approach while exhibiting less overestimation of the spectral noise power and an even lower computational complexity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.