Abstract

We analyze the unbiased black-box complexities of jump functions with small, medium, and large sizes of the fitness plateau surrounding the optimal solution. Among other results, we show that when the jump size is (1/2 - ε), that is, when only a small constant fraction of the fitness values is visible, then the unbiased black-box complexities for arities 3 and higher are of the same order as those for the simple OneMax function. Even for the extreme jump function, in which all but the two fitness values n/2 and n are blanked out, polynomial time mutation-based (i.e., unary unbiased) black-box optimization algorithms exist. This is quite surprising given that for the extreme jump function almost the whole search space (all but a Θ(n(-1/2)) fraction) is a plateau of constant fitness. To prove these results, we introduce new tools for the analysis of unbiased black-box complexities, for example, selecting the new parent individual not only by comparing the fitnesses of the competing search points but also by taking into account the (empirical) expected fitnesses of their offspring.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.