Abstract

This article recounts my graduate research at Yale University (1954-1958) on unbalanced growth in Eschericia coli during thymine deprivation or following ultraviolet (UV) irradiation, with early evidence for the repair of UV-induced DNA damage. Follow-up studies in Copenhagen (1958-1960) in the laboratory of Ole Maaløe led to my discovery that the DNA replication cycle can be synchronized by inhibiting protein and RNA syntheses and that an RNA synthesis step is essential for initiation of the cycle, but not for its completion. This work set the stage for my subsequent research at Stanford University, where the repair replication of damaged DNA was documented, to provide compelling evidence for an excision-repair pathway. That universal pathway validates the requirement for the redundant information in the complementary strands of duplex DNA to ensure genomic stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.