Abstract
This study aimed to investigate the possible functions and mechanisms of positive and negative costimulatory molecules in the pathological process of myasthenia gravis (MG). The expression levels of membrane-bound inducible costimulator (ICOS) and programmed cell death 1 (PD-1) in peripheral blood T cells, their corresponding ligands ICOSL and PDL-1 on B cells, and their soluble forms (sICOS, sPD-1, sICOSL, and sPDL-1) in plasma were detected in patients with untreated-stage MG (USMG) and remission-stage MG (RSMG). The results showed that the expression levels of membrane-bound ICOS and PD-1 in the peripheral blood T cells of the USMG group and their corresponding ligands ICOSL and PD-L1 on B cells were significantly increased compared to those in the RSMG group and healthy controls (HCs). The levels of sICOSL and sPD-1 were significantly upregulated in USMG patients compared to those in the RSMG and HC groups, while the levels of sICOS and sPD-L1 were not different. The expression of PD-L1 on CD19+ B cells was positively correlated with the concentrations of AchR Ab in the USMG group. The expression of ICOS and PD-1 in CD4+ T cells and the expression of ICOSL and PD-L1 on CD19+ B cells were positively correlated with the quantitative myasthenia gravis (QMG) scores in the USMG group. Also, in the USMG group, the plasma levels of sICOSL and sPD-1 were positively correlated with the QMG scores. In addition, the percentage of peripheral blood follicular helper T (Tfh) cells in the USMG group was positively correlated with ICOS and PD-1 expression on CD4+ T cells and ICOSL and PD-L1 expression on CD19+ B cells. There were positive correlations between sICOSL and sPD-1 levels and the percentage of peripheral blood Tfh cells and plasma interleukin-21 (IL-21) levels in the USMG group. The results suggest that the positive ICOS/ICOSL and negative PD-1/PD-L1 costimulatory molecule pairs participate in the pathological process of MG. Abnormal sICOSL and sPD-1 expression might interfere with the normal signal transduction of ICOS and PD-1 on Tfh cells, causing excessive activation of Tfh cells and promotion of disease progression. sICOSL and sPD-1 have potential value in monitoring MG disease states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.