Abstract
Transverse ElectroMagnetic (TEM) cell measurements are often used to evaluate the potential of ICs to cause radiated emissions in printed circuit boards. These measurements are a function of the unbalanced current on package power pins, for example, where more current enters one side of an IC than another, and the displacement current caused by capacitive coupling from the power grid mesh to the septum of the TEM cell. The relationship between unbalanced currents and TEM cell measurements is derived in this paper. A distributed model of the on-die power delivery network is developed to show that unbalanced currents may be caused by an asymmetric power pin arrangement, by an imbalance in package impedance, or by an imbalance in the impedance of the on-die power delivery network. To validate results, the magnitude and phase of high-frequency power-pin currents were measured on a test chip. Experiments showed that results could be used to guide modifications to the chip's connection to the printed circuit board power structure to minimize unbalanced currents and, thus, to minimize TEM cell measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Electromagnetic Compatibility
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.