Abstract
As rotary mechanical structure becomes more complicated, difficulty arises in receiving prime correction mass and optimum balancing plane efficiently. An innovative modal balancing process for estimating the residual unbalance from different equilibrium plane of complex flexible rotor system is presented. The method is based on a numerical approach with modal ratio among measurement points (MRMP) coefficient and triple phase method (TPM). The veracity of calculation result is verified by an academic rotor model. The latter study in this paper is subsequently put forward through a power turbine rotor modeled by finite element method. Simulation results show that proper equilibrium plane performs commendably in recognizing residual unbalance and reducing the vibration effect through the critical region. Moreover, the inherent unbalance recognized by experimental data from a turbine rotor with slender shaft is found to be in certain difference under different counterweight combination. Choosing suitable balancing planes will improve the accuracy of unbalance identification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.