Abstract

This work aims to propose a different approach to evaluate the operating conditions of a scaled wind turbine through vibration analysis. The turbine blades were built based on the NREL S809 profile and a 40-cm diameter, while the design blade tip speed ratio (λ) is equal to 7. Masses weighing 0.5, 1.0, and 1.5 g were added to the tip of one or two blades in a varying sequence with the intent of simulating potential problems and producing several scenarios from simple imbalances to severe rotor vibration levels to be compared to the control condition where the three blades and the system were balanced. The signals were processed and classified by a combination of detrended fluctuation analysis with Karhunen-Loève Transform, Gaussian discriminator, and Artificial Neural Network, which are pattern recognition techniques with supervised learning. Good results were achieved by employing the above cited recognition techniques as more than 95% of normal and imbalanced cases were correctly classified. In a general way, it was also possible to identify different levels of blade imbalance, thus proving that the present approach may be an excellent predictive maintenance tool for vibration monitoring of wind turbines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.