Abstract

Non-vanishing electromagnetic properties of neutrinos have been predicted by many theories beyond the Standard Model, and an enhanced neutrino magnetic moment can have profound implications for fundamental physics. The XENON1T experiment recently detected an excess of electron recoil events in the 1–7 keV energy range, which can be compatible with solar neutrino magnetic moment interaction at a most probable value of μν = 2.1 × 10−11 μ B. However, tritium backgrounds or solar axion interaction in this energy window are equally plausible causes. Upcoming multi-tonne noble liquid detectors will test these scenarios more in depth, but will continue to face similar ambiguity. We report a unique capability of future large liquid scintillator detectors to help resolve the potential neutrino magnetic moment scenario. With O(100) kton⋅year exposure of liquid scintillator to solar neutrinos, a sensitivity of μν < 10−11 μ B can be reached at an energy threshold greater than 40 keV, where no tritium or solar axion events but only neutrino magnetic moment signal is still present.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call