Abstract
We consider N quantum systems initially prepared in pure states and address the problem of unambiguously comparing them. One may ask whether or not all $N$ systems are in the same state. Alternatively, one may ask whether or not the states of all N systems are different. We investigate the possibility of unambiguously obtaining this kind of information. It is found that some unambiguous comparison tasks are possible only when certain linear independence conditions are satisfied. We also obtain measurement strategies for certain comparison tasks which are optimal under a broad range of circumstances, in particular when the states are completely unknown. Such strategies, which we call universal comparison strategies, are found to have intriguing connections with the problem of quantifying the distinguishability of a set of quantum states and also with unresolved conjectures in linear algebra. We finally investigate a potential generalisation of unambiguous state comparison, which we term unambiguous overlap filtering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.