Abstract

Reports in the clinical literature and studies of fmr1 knockout mice have led to the hypothesis that, in addition to mental retardation, fragile X syndrome is characterized by a dysregulation of hypothalamic-pituitary-adrenal axis function. We have systematically examined this hypothesis by studying the effects of stress on adrenocorticotrophic hormone and corticosterone levels in adult, male fmr1 knockout mice. Initially we determined the circadian rhythms of the plasma hormone levels in both wild-type and fmr1 knockout mice and established the optimal time to impose the stress. We found no genotypic differences in the circadian rhythms of either hormone. We studied two types of stressors, immobilization and spatial novelty; spatial novelty was 5min in an elevated plus-maze. We varied the duration of immobilization and followed the time course of recovery of hormones to their pre-stress levels. Despite the lower anxiety exhibited by fmr1 knockout mice in the elevated plus-maze, hormonal responses to and recovery from this spatial novelty were similar in both genotypes. Further, we found no genotypic differences in hormonal responses to immobilization stress. The results of our study indicate that, in FVB/NJ mice, the hormonal response to and recovery from acute stress is unaltered by the lack of fragile X mental retardation protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.